Top Dilepton Cross-Section Measurement -BLESSING-

Mircea N. Coca on behalf of

Ricardo Eusebi, David Goldstein, Eva Halkiadakis, Andy Hocker, Andrew I vanov, Carla Pilcher, Charles Plager, David Saltzberg, Monica Tecchio, Paul Tipton with *Top Dilepton Working Group*

Presentation Overview

- Nothing Changed Since the Preblessing except
 - Documentation
 - Performed cross-checks
 - B-tags Estimates
- Answer to questions raised during Preblessing Talk
- Acceptance and Backgrounds
- Cross Section Result
- More Cross-Checks
 - b-tags
- PR Plots for Blessing

Documentation

CDF Notes:

- CDF6830 "Measurement of the tt xsection with dileptons"
- CDF6742 "A 2nd Determination of the Fake Background"
- CDF6590 "Acceptance and Background Systematics"

Summer'03:

- CDF6517 "Adding CMIO muons to the Top Dilepton xsection"
- CDF6579 "Optimization studies for the Top Dilepton xsection"
- CDF6591 "Determination of DY background Summer'03"
- CDF6592 "Fake Lepton Backgrounds for the Summer'03"
- CDF6588 "A measurement of the tt xsection Summer'03"
- Q&A web page in place
 - http://www-cdf.fnal.gov/internal/physics/top/run2dil/iteration3/doc.html
- Previous talks at this meeting
 - Mircea Coca, "Full Status Report", 29-JAN-2004
 - Andy Hocker, "Dilepton Cross Section Update", 08-JAN-2004
 - Monica Tecchio, "Top Dilepton Cross-Section-Preblessing", 05-FEB-2004

History of the Analysis

- Blessed with 72 pb⁻¹ in Spring'03 using tight-tight dilepton categories
- Performed various optimizations for Summer'03
 - doubled the acceptance
 - blessed result with 126pb⁻¹
- This is the third iteration
 - incorporating the lessons from the previous two to keep a high purity analysis
 - S/B = 3.5
 - use the full dataset available until September 2003 shutdown: 193 pb⁻¹

Questions from Preblessing I

- Q: How do you know you don't have real leptons in the jet samples?
- A: We reject the events with obvious high-P_T "real" leptons
 - W's by requiring MET < 20 GeV
 - Z's if there are two tight leptons in the mass window
 - Contamination is smaller in case of muons
 - Only a W+1j could make into the inclusive QCD samples
 - Changing slightly the MET cut: 15, 20 or 25 GeV does not change the fake estimate
 - JET100 fake rates are consistent with JET50 fake rates
 - We looked at the fake rates in a b-enriched sample
 - They are consistent with fake rates from generic jets

Questions from Preblessing II

- Q: Why is it better to use CdfEmObjects and min-I tracks than generic jets?
- A: We estimated for the Summer 2003 the fake background in both ways
 - Found good agreement (See CDF6742)
 - An electron is just a small part of a jet
 - E_T(jet) ≠E_T(fake lepton from jet), so it is not straight forward to do E_T parameterizations
 - A 100 GeV jet could fake a 20 or a 50 GeV lepton, so the fake rate might be JET sample dependent, gluon vs quark jet dependent, etc
 - Good agreement between predicted and observed # of fakes in various jet samples

Questions from Preblessing III

- Q: The fact that you see agreement in the j100 sample, despite 300% uncertainty.... luck?
- N: Looked back and found that the binning used was too fine
 - Not what we used for fake estimate
 - Using the coarser binning we get

	pred	obs
J20	32 +/- 3	34 +/- 6
J70	85 +/- 15	63 +/- 8
J100	77 +/- 70	67 +/- 8

	pred	obs
J20	37 +/- 7	34 +/- 6
J70	74 +/- 40	63 +/- 8
J100 (63 +/- 190	67 +/- 8

Questions from Preblessing IV

- Q: So then can you do a meaningful test by restricting the test to lower-E_T jets in the j100 sample?
- A: Yes, good idea.

 We vary MAX_{lso} and MAX_{ET} and look at predicted vs observed fakes

 in (20, MAX_{ET}) X (0.1, MAX_{lso})

$MAX\;E_T$	MAX IsoFr	Observed	Predicted
40.0	0.7	28.00 ± 5.29	31.83 ± 2.15
40.0	1.5	39.00 ± 6.24	44.80 ± 3.14
50.0	2.1	49.00 ± 7.00	60.36 ± 5.35
50.0	0.7	34.00 ± 5.83	43.87 ± 2.96
60.0	2.1	55.00 ± 7.42	65.06 ± 11.38
60.0	0.3	25.00 ± 5.00	19.84 ± 2.27
80.0	2.5	65.00 ± 8.06	77.00 ± 48.37
120.0	2.5	67.00 ± 8.19	77.00 ± 61.96
120.0	1.5	64.00 ± 8.00	72.49 ± 56.92

NCEM

Uncertainties go up due to the lack of statistics

Questions from Preblessing V

- Q: Don't you have to know the generic jet -> fakeable jet rate?
- A: No, because the fake rates determined per fakeable jet are only applied to W+fakeable jet(s) events.
- Q: What do you predict/observe in terms of SS events?
- A: Using Jet50 fake rates and W+multijets we get

	0 jet	1 jet	≥2 jet
SS predicted	2.3 ± 0.5	1.8 ± 0.4	0.9 ± 0.2
SS PHX charge fake	0.61 ± 0.25	0.26 ± 0.1	0.08 ± 0.03
SS observed	3	2	0

Questions from Preblessing VI

- Q: Why do all the Z cross sections come out low?
- A:They all have a common systematic of about 15 pb from the luminosity uncertainty.
 - Also the estimates agree with what other groups measured
 - Lepton+track group saw the same behavior
- Q:How many b-tags do you expect?
- A: This will be answered later in the talk...

Questions from Preblessing VII

Q: Awful lot of jets in your candidates, aren't there?

A: Not quite! Still low statistics, but the agreement with Pythia

is good.

Questions from Preblessing VIII

Q: Exactly how are the lepton P_T's distributed in that lowest

bin?

A: Let's look at the data.

Leading lepton: $1 \text{ lepton} \in (20, 30) \text{ GeV}$ None $\in (30, 35) \text{ GeV}$ $8 \text{ leptons} \in (35, 40) \text{ GeV}$

So not all soft…

Got the Run I memory?

- Large transverse momentum leptons in Run 1

Dilepton Categories

ee category: 22.2%	Trigger required
CEM – CEM	CEM_18
CEM – PHX	CEM_18
mm category: 23.5%	
CMUP – CMUP	CMUP_18
CMUP - CMIO/U/P	CMUP_18
CMX - CMIO/U/P	CMX_18
CMX - CMX	CMX_18
CMX - CMUP	CMX_18 CMUP_18
em category: 54.3%	
CEM – CMUP	CEM_18 CMUP_18
CEM - CMIO/U/P	CEM_18
CEM – CMX	CEM_18 CMX_18
PHX – CMUP	CMUP_18
PHX – CMX	CMX_18
PHX - CMIO/U/P	MET_PEM

Red lepton types are the trigger leptons

Only 3.2% of dileptons come on MET_PEM trigger

Signal Composition

By event topology

CC-I: 75.9% CC-NI:9.1% CP-I: 14.0%

By lepton flavor

CC = central-central

CP = central-plug

= isolated

NI = non-isolated

ee: 22.2 %

μμ: 23.5 %

eμ: 54.3%

Backgrounds

- Fakes: estimated from W+N_{jets} data sample using fake rates for each lepton type extracted from Jet50 sample
- WW/WZ/ZZ: estimated from Pythia Monte Carlo
- Z->ee and Z->mm (DY): estimated from data and Monte Carlo
- Z->tt: estimated from Pythia Monte Carlo and data (2 jet fraction).

After H_T and OS

Backgrounds- Systematic Uncertainties For Blessing

Background	Source	Uncertainty (%)	% Error on the Xsec
Fakes	Method	31	3.3
	Different Jet Samples	9	
DY (ee, mm)	Method	100	4.1
	Jet energy scale (H _T)	20	
WW/WZ	MC Generator	36	1.7
	Jet energy scale	18	
Z?tt	2-jet efficiency	10	0.4
	Jet energy scale	29	

If only source of systematics, they would contribute ± 0.5 pb (out of ± 1.4 pb total for measured cross-section)

Signal Acceptance

- Raw acceptance using ttopei Pythia
 - restricting to MC top dilepton events at HEPG level events
 - with OBSV $|z_v|$ < 60 cm:

 $0.813 \pm 0.014\%$

- Raw efficiency is corrected for:
 - OBSV $|z_v|$ < 60 cm efficiency: (0.951 ± 0.005) (CDF 6660)
 - Lepton ID Scale Factor, one for each lepton type
 - Muon Reconstruction Scale Factor
 - Trigger Efficiencies
 - PHX Charge Fake Rate from Data (13%)
- Total effect is to decrease the raw efficiency by ~ 15%

Acceptance Corrections

Use blessed CDF numbers (except the ones in red)

lepton type	lepton-ID SF	μ-rec SF	Etrig
CEM	0.965 ± 0.006	NA	0.966 ± 0.001
NICEM	0.96 ± 0.11	NA	NA
PHX	0.87 ± 0.01	NA	0.88 ± 0.03
CMUP	0.94 ± 0.01	0.927 ± 0.010	0.890 ± 0.009
CMX	1.015 ± 0.007	0.992 ± 0.011	0.966 ± 0.007
CMU	0.993 ± 0.013	0.989 ± 0.021	NA
CMP	0.983 ± 0.011	0.920 ± 0.016	NA
NICMALL	0.986 ± 0.041	as for Iso	NA

Z→// Cross Sections

- We measure the Z cross-section in all of the di-lepton categories used in our analysis
 - A way to validate
 acceptance correction
 factors, data quality and
 luminosity
 - Use version 4 of DQM good run list
 - Include I/NI loose lepton
 - Errors are from statistics and luminosity
 - They all agree with NLLO theoretical prediction of
 252 ± 9 pb

Dilepton Category	sxB(Z? II)	<i>L</i> (pb ⁻¹)
CEM-CEM	235 ± 4 ± 15	162
CEM-PHX	240 ± 4 ± 15	162
CMUP-CMUP	234 ± 8 ± 17	193
CMUP- CMIO/U/P	244 ± 6 ± 17	193
CMX-CMX	225 ± 14 ± 16	175
CMX-CMIO/U/P	247 ± 9 ± 16	175
CMUP-CMX	247 ± 8 ± 16	175

Acceptance Systematic Uncertainties

Source	Uncertainty (%)
Lepton ID SF	5.0
Jet Energy Scale	4.7
ISR/FSR	1.7
PDF's	11.6 [*]
MC Generators (Pythia vs. Herwig)	5.5
Total	14

- If only source of systematics, they would contribute
 - ±1.2 pb (out of ±1.4 pb total for measured cross-section)

Dataset

- High-P_T inclusive lepton datasets, 4.11.1 REMAKE
- Plug dataset (bpel08/09), stripped on L3 MET_PEM, 4.11.1 "REMAKE"
- PES alignment corrections done when ntuplizing data
- Use version 4 of DQM good run lists
 - Bad CSL and SVX beam line runs excluded by hand
- We require good CMX runs for CMX dilepton categories and good SVX runs for PHX categories:

CEM/CMUP: 193 pb⁻¹

CEM/CMUP and CMX:
 175 pb⁻¹

CEM/CMUP and SVX: 162 pb⁻¹

CEM/CMUP and SVX and CMX: 150 pb⁻¹

 Effect of folding different luminosities with dilepton category is equivalent to a further 5% decrease in signal acceptance

Results

Cross-check our background predictions in regions with no

top signal

Good agreement in N=0j and N=1j bins

SIGNAL REGION

		N jets		
Source	0j Oj	1j	≥ 2j	H_T , OS
WW/WZ	12.1 ± 4.9	3.2 ± 1.3	0.81 ± 0.33	0.49 ± 0.21
Drell-Yan	4.4 ± 2.0	2.2 ± 1.1	0.7 ± 0.4	0.43 ± 0.44
$Z \rightarrow \tau \tau$	0.19 ± 0.06	0.86 ± 0.26	0.69 ± 0.21	0.42 ± 0.13
Fakes	5.53 ± 1.14	4.35 ± 0.90	2.47 ± 0.52	1.07 ± 0.35
Total Background	22.2 ± 6.7	10.6 ± 2.8	4.7 ± 1.0	2.4 ± 0.7
$t\bar{t}$ ($\sigma = 6.7 \text{ pb}$)	0.1 ± 0.0	1.4 ± 0.2	8.7 ± 1.2	8.2 ± 1.1
Total SM expectation	22.3 ± 6.7	12.0 ± 2.8	13.3 ± 1.7	10.6 ± 1.4
Run II data	19	11	14	13

Results per di-lepton flavor

For Blessing

CDF II Preliminary 193 pb⁻¹

	Events per $193 \; pb^{-1}$ after all cuts				
Source	ee	ee $\mu\mu$		$\ell\ell$	
WW/WZ	0.15 ± 0.06	0.12 ± 0.05	0.22 ± 0.09	0.49 ± 0.21	
Drell-Yan	0.36 ± 0.28	0.07 ± 0.34	-	0.43 ± 0.44	
$Z \rightarrow \tau \tau$	0.09 ± 0.03	0.11 ± 0.03	0.22 ± 0.07	0.42 ± 0.13	
Fakes	0.30 ± 0.10	0.15 ± 0.05	0.62 ± 0.22	1.07 ± 0.35	
Total Background	0.9 ± 0.3	0.4 ± 0.4	1.1 ± 0.2	2.4 ± 0.7	
$t\bar{t}$ ($\sigma = 6.7 \text{ pb}$)	1.9 ± 0.3	1.8 ± 0.3	4.5 ± 0.6	8.2 ± 1.1	
Total SM expectation	2.8 ± 0.4	2.3 ± 0.5	5.5 ± 0.7	10.6 ± 1.4	
Run II data	1	3	9	13	

Signal/Background = 3.5

Cross-Section Result

$$\mathbf{s}(t\,\bar{t}) = \frac{N_{obs} - N_{back}}{\mathbf{e} \times A \times \int Ldt}$$
$$\mathbf{e} \times A \times \int Ldt = (1.22 \pm 0.17) \, pb^{-1}$$

Winter'04 Top Dilepton Cross-Section at m_t= 175 GeV:

$$\mathbf{s}_{t\bar{t}} = 8.7^{+3.9}_{-2.6}(stat) \pm 1.4(syst) \pm 0.5(lumi) \ pb$$

- Theoretical Prediction: (6.7±0.5) pb.
- Summer'03 Top Dilepton Cross-Section:

$$\mathbf{s}_{t\bar{t}} = 7.6^{+3.8}_{-3.1} (stat)^{+1.5}_{-1.1} (syst) pb$$

Candidate events

	Туре	N _{JETS}	SecVtx Info	Trigger coming on
ee	CEM -CEM	3		CEM_18
mm	CMUP-CMX	2	2 btags	CMUP_18 && CMX_18
	CMUP-CMP	2	2 btags	CMUP_18
	CMX -CMX	3	1 btags	CMX_18
em	CEM -CMUP	2		CEM_18 && CMUP_18
	CEM -CMU	3	1 btag (on lowest Et jet)	CEM_18
	CEM -CMP	4	bad SVX	CEM_18
	CEM -CMX	2	2 btags	CEM_18 && CMX_18
	CEM -CMX	3	1 btag	CEM_18 && CMX_18
	CEM -CMX	3		CEM_18 && CMX_18
	CEM -CMIO	3		CEM_18
	PHX -CMUP	2		CMUP_18 && MET_PEM
	CMUP-NICEM	2	1 btag (away from NICEM!)	CMUP_18 && CEM_18

Expect 1
NI lepton
event
Got 1

Expected/Observed b-tags

 $\varepsilon_{\text{btag}}^{\text{evt}} = F_{1b} e_{\text{btag}} S + F_{2b} 2^* e_{\text{btag}} S (1 - e_{\text{btag}} S) + F_{2b} e^2_{\text{btag}} S^2$

 $\epsilon_{\text{2-btag}}^{\text{evt}}$ ϵ_{1-btag}^{evt}

= data/MC b-tag scale factor

 F_{1b} , F_{2b} = fraction of events with 1 or 2 taggable b-jets

= b-tagging efficiency per jet (from MC) ϵ_{btaq}

	dilepton	l+jets
$\epsilon_{ ext{btag}}$	0.543 +/- 0.008	0.535+/-0.006
F _{1b}	0.364 +/- 0.009	0.395+/-0.005
F _{2b}	0.539 +/- 0.009	0.489+/-0.013

- $\begin{array}{ll} & \epsilon_{btag}^{} \ ^{evt} = 0.560 \text{+/-}0.168 \\ & \epsilon_{1\text{-}btag}^{} \ ^{evt} = 0.442 \text{+/-}0.125 \\ \end{array}$
 - $\varepsilon_{2\text{-btag}}^{\text{evt}} = 0.118 + /-0.038$

	Observed	Predicted
# Tagged Events	7	5.9±1.8
# Single Tagged Events	4	4.6±1.3
# Double Tagged Events	3	1.3±0.5

N_{JET} – BG only

N_{JET} – BG+SIGNAL (6.7 pb)

N_{JET}- BG+SIGNAL (8.6 pb) For Blessing

Lepton $p_T - BG + SIGNAL$ (6.7 pb)

P_T(highest) vs P_T(2nd highest)

Di-lepton Mass — BG+SIGNAL (6.7 pb)

For Blessing CDF Run II Preliminary ∫ L dt = 193 pb⁻¹

MET - BG+SIGNAL (6.7pb)

For Blessing

CDF Run II Preliminary
$$\int L dt = 193 \text{ pb}^{-1}$$

MET distribution for events passing all the cuts

$H_T - BG+SIGNAL (6.7 pb)$

For Blessing CDF Run II Preliminary $\int L dt = 193 \text{ pb}^{-1}$

 H_T distribution for events with ≥ 2 jets, before H_T or OS cuts

Conclusions

- We measured top cross-section in dilepton channel in 193 pb⁻¹ of data
 - a high purity selection: S:B = 3.5:1
- The result

$$\mathbf{s}_{t\bar{t}} = 8.7^{+3.9}_{-2.6}(stat) \pm 1.4(syst) \pm 0.5(lumi) \ pb$$

is consistent with SM predictions.

- We would like to move toward a publication
- We had a second meeting with GPs today

Backup Slides

Top Dilepton Topology

- 2 high-E_T, leptons (e, μ)
 - Sensitive only to leptonic decays of taus
 - Loose nonisolated leptons allowed
- Large missing energy E_T
 - Corrected for muons and tight L5 jets
- Z-mass region for same-flavour events
 - special treatment
- At least 2 jets with large E_T
 - Cone algorithm 0.4
 - Corrected E_T to L5, $|\eta|$ < 2.5
- Large transverse energy flow $H_T = \Sigma(E_T^{leptons}, E_T^{jets}, MET)$

Changes from Summer'03

- Revisited the lepton categories (See Andy's Talk)
 - Excluded Non-PHX PEMs
 - Big bckgr source: half the fakes, 20% of total bckgr
 - Contributes about 5% to top acceptance
 - Excluded Plug-Plug categories
 - < 2% of top acceptance
 - Come in on MET_PEM trigger, which makes any datadriven DY determination very hard
- Cut on COT exit radius for CMX muons
- PHX |η| < 2.0 to reduce the charge fake
 - (Summer'03: $|\eta| < 2.5$)
- Updated the scale factors, trigger and reconstruction efficiencies

Event Selection

- \geq 2 leptons, $p_T > 20 \text{ GeV}$
 - At least one of which is TIGHT (CEM, CMUP, CMX or PHX)
 - At most one central lepton (except CMIO) can be nonisolated
- ≥ 2 jets, L5 corrected, E_T > 15 GeV
- MET > 25 GeV (corrected for muons, jets)
 - If MET < 50 GeV, $\Delta \phi$ (MET, nearest I or j) > 20 deg
- If 76 GeV < M_{II} < 106 GeV and same-flavor,
 - jetSig > 8 (jetSig=MET/sqrt(Σ jet E_T projected on MET))
 - $\Delta \phi$ (MET, nearest I or j) > 10 deg
- $H_T > 200 \text{ GeV } (H_T = \Sigma (\text{leps, jets, met}))$
- Opposite charge

DY background method 1

- Use data:
 - To measure the number of Z's inside the mass window
 - N_{MFT} (after MET > 25)
 - N_{zveto} (after MET> 25 and Zveto cuts)
 - Subtract contribution from other processes
- Next use Monte Carlo:
 - to distribute the events in jets bins
 - N_0/N_{tot} , N_1/N_{tot} , $N_{\geq 2}/N_{tot}$
 - to move outside the mass window
 - R^j_{o/i} = ratio of outside/inside for jet bin j
 - to calculate H_t cut efficiency (mass dependent)
 - I nside the mass window
 - Outside the mass window

DY background method 2

- We estimate DY in each jet bin j, where j=0,1, ≥2
- We want to check our predictions on 0 and 1 jet bin

Drell Yan:Ro/i

Drell Yan: N jet ratios

Drell Yan: N_{MET} and N_{Zveto}

 Dominant uncertainty is due to limited number of Z's after MET and Zveto cuts

Questions from Preblessing I

- Q: Where do your fake rates come from?
- A: For electrons:
 - Fake rate = (# fake electrons)/ (# CdfEmObjects)
- For muons:
 - Fake rate = (# fake muons)/ (# min ionizing tracks)
- Remember:
 - We parametrize the fake rates as a function of E_T and Isolation Fraction
 - We test the fake rates but using JET50 rates to predict JET20,
 JET70 and JET100 (See CDF 6742 for details)
 - Also look at b-enriched samples

N_{Jets}

